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DIFFERENTIAL PROPERTIES OF INTEGRAL FUNNELS AND STABLE BRIDGES* 

KH. G. GUSEINOV and V.N. USHAKOV 

Left derivatives of a multivalued mapping, similar to those previously 
introduced in /l, 2/, are applied to investigate the necessary and 
sufficient conditions for the integral funnel of a differential 
inclusion. In terms of the construction developed for analysing the 
value function of a differential game (see, e.g., /3, 4/) and 
generalized solutions of the Hamilton-Jacobi equation (viscosity 
solutions in the sense of /5, 6/j, we describe the integral funnel using 
viscosity solutions of Bellman's equation. The properties of stable 
bridges are investigated using left derivatives. Necessary and 
sufficient conditions for stable bridges are stateditit . 

The properties of integral funnels of differential inclusions and stable bridges have 
been studied by many researchers (see, e.g., /7-21/ and the references therein). Integral 
funnels were studied in /ll, 12/ within the framework of so-called R-solutions relative to 
the right-hand side of the differential inclusion. Differential (infinitesimal) relationships 
characterizing the boundary of an integral funnel were obtained in /13, 14/. The integral 
funnel was described in /15/ in terms of a scalar function, which with certain assumptipns 
is the solution of Bellman's equation. The notion of derivatives of a multivalued mapping 
was used in /2, 16, 20/ to derive relationships characterizing u-stable bridges and strongly 
and weakly invariant sets relative to differential inclusions. 

1. Suppose we are given a system whose behaviour is described by the differential 
inclusion 

5' (t) cz F (t, 5 (t)), .z E R", trz IO,81 = T (1.1) 

A solution of the differential inclusion (1.1) is an absolutely continuous function 
z(t) which almost everywhere satisfies the differential inclusion (1.1) (see, e.g., /21/j. 

The set 6f solutions of the differential inclusion (1.1) satisfying the initial con- 
dition z(t*)EX(t,) will be denoted by the symbol X_(t,, X,) and the integral funnel of 
the differential inclusion (1.1) with the initial set (t*, X,) will be denoted by the symbol 

H+ (t*,X*). By definition, 

H+(t,, X,)== {(t,s(t)):t E [t*, 61, z(.) E X+(t*, X,)) 

In the differential inclusion (1.1) we make the change of variables 7 = 6 - t, y (?) = 
5 (6 - 4, where t E IO, 61. 

With this change of variables, (1.1) becomes the differential inclusion 

dy (z)idT E: --E' (t, y (z)), z E lo, 61 (1.2) 

The set of solutions of the differential inclusion (1.2) satisfying the initial con- 
dition Y (r*) E y* will be denoted by the symbol X_(z,,Y,), and the integral funnel of 
the differential inclusion (1.2) with the initial set (7*, Y*) will be denoted by the symbol 
H_(z,, Y*) , so that 

H_@,, Ye) = ((~,Y(~)):~E[~*, 61, y(.)~X_(z,, Y,)} 

Let us state the necessary and sufficient conditions for which the set WCTXR" 
is identical with the integral funnel of the differential inclusion (1.1) with the initial 
set (0, X,) . In this context, we define the strong and weak invariance of a set relative 
to a differential inclusion (see, e.g., /2/J. 

For the set WCTXR”, let 
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+$*Detailed proofs of the propositions formulated in this paper can be found in GUSEINOV KH.G. 
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w (t) = {x E R”: (t, 2) E W}, w* (2) = w (9 - z) (1.3) 

w* = {(z, Y) E IO,61 x R": Y E w* (4) 

Definition 1.1. The set W&C I.' X R" is called weakly invariant relative to the dif- 
ferential inclusion (1.2) if for any point (~*,Y*)E W* there exists a solution Y(.) fG 
x.. (% Y+) such that Y (7) E W* (r) for all z E [.c,, 61. 

Definition 1.2. The set WC T X R” is called strongly invariant relative to the 
differential inclusion (1.1) if for any point (t,,x,)E W and any solution 
we have X (t)E w(1) for all t E [&,@I. 

5 (*) E x, G*, X,) 

We assume that H, (0, X0) rl {(t, x): x E R”} + E for any t E [O, 141. 

Theorem 1.1. For the set WC T x R” to be an integral funnel of the differential 
inclusion il.11 with the initial set (0,X& (X,C Rn), it is necessary and sufficient that 
W(0) = x, and the sets W and w* be respectively strongly invariant relative to the dif- 
ferential inclusion (1.1) and weakly invariant relative to the differential inclusion (1.2). 

2. Let us define the derivatives of a multivalued mapping (see, e.g., /2, 17/). 
For a closed set WC T x R” and the point (8,x)") T x Rn, let 

D,W (t, 3) = {d E Et”: 3(tK, xp) E W, tx > t 

k = 1, 2, . . a, lim (5r - x)l(tb - t) = d) 
tpi+0 

We similarly define D_W(t,x) with the sole difference that t,c t and the limit is 
evaluated for tr-s t- 0. 

The set D+W(t,x)(D_W(t,x)) is called the right (left) derivative set of the multi- 
valued mapping tu w(t) evaluated at the point (t,x). 

Note that these definitions of the derivative of a multivalued mapping are closely 
linked with the notion of an upper cone of tangential directions (see e.g., /l/l. We can 
show that the upper cone T&(t,x) is related to the derivative sets by the egualities 

D*W (t, x) = {d E R”: (&C +d) E T$ (t, x)} 

We will give a simple property of derivative sets. 

Proposition 2.1. Let WC ?' X R” be a closed set and let the multivalued mappings 
t-+ w (t), a c w* (z) be defined respectively by relationships (1.3). Then for any (1, 4 E 
T x R” 

D*W (t, x) = --D,w* (S - t, x) 

In what follows, we assume that the right-hand side of the differential inclusion (1.1) 
satisfies the following conditions: 

A) F (t, x) is a convex compactum for all (t,x)E T x R”; 
B) the multivalued mapping (t,z)n F(t,z) is continuous in 

in 
(t, r)and locally Lipschitzian 

r, 1-e., 

a (F CT, Y), F (6 4) + 0 for (z, Y) -+ (t, 4 
a (F (4 4, F 6 4) < h (G) II ~1 - 5s II 

C) max 11 fil g c (I + II ~11) for f E F (t, x). c = const _ 
In Condition B, a(., a) is the Hausdorff distance, GC T x R" is any bounded closed 

region, (t, xi) E G, t = 1, 2. 
Put 

f-k. ft. =* sf = b’ E Rn: (ST Y> < 8, n+ (t, X, S) = {y E R”: ,(s, g> > E} 

inf 
Pr 0. I, s) = 

i I sup G-td), clED*W(t,z) 

E = g (k x, 3) = min <s, f>, f E F (t, x) 

where (e, a> is the scalar product. 

Theorem 2.1. Let WC T x Rn, X, C R” be closed sets. 
For W to be an integral funnel of the differential inclusion (1.1) with the initial set 

(0. T,) it is necessary and sufficient that W(O)= X, and that one of the following 
egulvalent conditions holds: 
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a) F (4 x) c D+W (6 4, F (t, 4 n D-W (k 4 # ~22 
b) F (t, x) c co D+W (k I), F (t, x) n co D-W (6 4 # 23 
c, 
d) 

co D+W (t, 4 fl K (t, 2, 4 f 537, co D-W (4 4 n n+ (k x, s) # @ 
p_ (t, 2, 4 < 5, p+ (4 5, s) 2 5 

Here (t,z) E BW, SE El”, CO {.} is the convex hull of the set {.), BW is the boundary 
of the set W. 

Consider the case when 

W = {(t, x) E T x R”: g (t, I) < 0) (2.1) 

where we assume that the function g(.): T x Rn H R’ is continuous in (4 4 and locally 
Lipschitzian in 2. 

Put 

Definition 2.1. The set W c T X Rn of the form (1.6) is called regular if 

cl A- (t, x) = A (4 x), cl B- (t, 5) = B (t, x), tr(t, 5) E aw 

where cl {.) is the closure of the set {.}. 
If the set W is regular, then D+W (t, z) = A (t, z), D-W (t, Z) = B (t, 5) (see /17/j, and 

from Theorem 2.1 we obtain 

Theorem 2.2. Let X0 be a closed set in R”. For the regular set WC T X R” defined 
by relationship (2.1) to be an integral funnel of the differential inclusion (1.1) with the 
initial set (0, X0) it is necessary and sufficient that W(0) = x, and that one of the 
following equivalent conditions is satisfied: 

a) 

b) inf 
dEA(i, 

-<O 

Here (t,z))E aW, SE R”. 
Note that the necessary and sufficient conditions of an integral funnel are also valid 

for the more general case of sets with a piecewise-smooth boundary. 
We will show the relation between an integral funnel and the viscosity solution of the 

Bellman equation. Let the set X,cR” be described by the relationship 

set, 

X, = {x E R”: a (5) < 0) (2.2) 

We assume that the function a (.): R” H R’ is locally Lipschitzian. If X0 is a closed 
then in particular it may be defined as follows: 

X, = {z E R”: r (5) < 0), r (x) = dist (z, X,) 

Consider the problem 
Y' (z) E --F (6 - ~7 Y (T)), Y (23 = Y, 

Y (Y (.)I = a (Y (W - min for Y (.I E X (zo, zh) 
Put c (x Y (%)) = min a (Y (6)) for y (e) E X_ (Q, yp). We know* that the function c(.): T X 

Rn Y R’ is locally Lipschitzian and is the viscosity solution of Bellman's equation 

dc (z, y)/dz +- $ (z, y, ac (z, Y)/8Y) = 0 

with the boundary condition c(@,Y) = a(y); here q(~,Y,z) = min(z,f) for f E -F (6 - z, y). 
we can show that the set 

V = { (t, y) E CO, 61 x R”: c (S - t, y) < 0) (2.3) 

is identical with the integral funnel of the differential inclusion (1.1) with the initial 
set (0,X,), where X0 is defined by (2.2). 

Theorem 2.3. Assume that the set X, is defined by relationship (2.2). Then H+(O,X,) = 
V, where the set V is defined by (2.3). 
*See Guseinov Kh.G., Derivatives of Weakly and Strongly Invariant Sets and Their Application 
to Control Problems (Proizvodnye slabo i sil'no invariantnykh mnozhestv i ikh pr-menenie k 
zadacham upravleniya), 
8155-V86. 

Baku, 1986. Unpublished manuscript available from ~1~1~1, 1.12.86, 
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3. Consider tbe description of stable bridges in a differential game of pursuit by 
infinitesimal constructions. 

Assume that the behaviour of the conflict-controlled system in the time interval It,, 61 

P > 42) is described by the differential equation 

2‘ = f (t. 2, u, v), x (t*) = x0, I4 E P c RP, v E Q c R* (3.41 

Here x E R” is the phase vector of the system, U is the vector of controls, V is the noise 
vector and @ and Q are compact sets. 

We assume that the function f (t, x, n, V) is constrained by the usual constraints of 
differential games (see, e.g., /7/f. 

We also assume that all the positions (5,x) considered below are contained in some 
compact domain D c It,,61 X R" and for any (1*,x*), (1*,x*) in D we have the inequality 

a (F, (t*, x*1. F, o** s**)) Q a* ( I t* - t, I -I- III* - s*II ) 
F, (t, 2) = co {f (t, 5, 4 v): u E P) 

Here w*(6) is some function that falls monotonically to zero as 6+_tO and is indepen- 
dent of the choice of (t,,s,). 

Taking tO< t,< t* <,<, w* CIi", we put X,,(t*, 
6% X, (t*; t*, x*) 

t’, W’) = {x* E Rn: W* !I X, (t*; t,, x*) + 
is the set of all points in R” which at time t* are reached by the 

solutions I(.) = (z(t): t, g t < t*, r (t*) = ‘2*) of the differential inclusion x' E F, (t, x). 
Let the closed sets M c R”, W c D be given. We define the u-stable bridge /7/. 

Definition 3.1. The set W is called a u-stable bridge in the problem of approach with 
the target I if 

W (6) = M, W (&) c$cX, (f,; t*, W @*)) 

vt,, t* (&I < t, < t* S@) 

(the set w(t) is defined by (1.3)). 
We will reproduce a proposition from /17/ which shows that the u-stable bridge can be 

defined using the notion ,of right derivative of the multivalued mapping t* w(t). 

Theorem 3.1. The set w is a u-stable bridge in the problem of approach with the target 
M if and only if 

W @) C M, D,W (tw xd il F, (t*, x*) + 0 
w*, x+1 0, E rt,, Wf, v E Q 

Theorem 3.1 is thus a criterion of u-stability stated in terms of the right derivative 
D+W(t,z). Below we state a criterion of u-stability using the notion of left derivative 
D-W (t, 4. 

Assuming that W is a closed set in D, we put 

KW(t,,r*) = {dE R”: s{ak} (at-+0 for k+ j-00), 

dist (x* -t- a& W (t,)) akml + 0 for k -+ _t-}; 

a,@*, x*; f*) = { (h,, f") E zfW(P, I*) x F, (t*, x*): f* E -h, + f”; 
u (WI, W,) = sup dist (-2, W,) for z E WI 

Here (t*, x*), (t*,x,) are points in W; WI and W, are sets in R”; dist(x, W,) is the dis- 
tance from the point x to the set W*. 

We say that condition C is satisfied if: 
for each point (t*, r*) E W (t* G (to, 8)) there are a function 

A-z-t-0) R F lo, CQ) 
o(A) (lim ~(A)/A = 0 as 

and such that 
Cl) for any 6 E (0, @ - t*) 

that satisfy the inequality 
there are t* E (t*, t, + 61, (t*, x*) s w, f* E ~_w(t*, s*) n Go, 

II r* - 5* - (t* - t*) ff II < w o* - t*) (3.2) 

C21 for the pair (xx, f*) from condition C1 and any 
9, (t*, x*: f*) and a point x* E W(t*), such that 

UEQ there are a pair (h,, f,) E 

I( z* - (t* - t*) h, - w* ]I < 0 (t* - t.J 

Here CR = {x E R”: J] x]] < R}. 

Theorem 3.2. If the closed set WcD is a u-stable bridge, then necessarily 
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If for a closed set W condition (3.3) holds for any points (tzt r*) E I+' (& E (to, @)I and, 
moreover, condition C is satisfied, then the set W is u-stable. 

Alongside condition C, we introduce another condition, which is easier to check. 
We say that condition c* is satisfied if: 
for each point (t,,z*)e W(t, ~(t,,6)) there are a function w(A) (lim ~(A)/A = 0 for 

A-tSU) and R E 10, cc) such that 
C*2) for any 6E (&a - t*) there are t* E (t*. i, f 61,(t*, s*) E W, f* E D_W(t*, s*) n 

CR, such that condition (3.2) holds; 
c*2) for any (t*,z*) from C*l we have the inequality 

cr (Kn (t*, cc*), W (t*)f < m (A) (A >, 0) 

K” (t*, s*) = .z* f KW (t*, z*) fl G(K~R>A 

(K = max (1 f (t, 5, u, v)II for (t, I, u, u) G D X P X Q 

The following assertion shows that condition C* is more restrictive than C. 

Proposition 3.1. Let W be a closed set in D for which condition (3.31 holds for all 
(t*, z*) E W (t* E (to,@)). If condition C* is satisfied, then condition C is also satisfied. 

There are examples which show that conditions C and C* are not equivalent. For instance, 
non-equivalence is observed when W is a maximum u-stable bridge in the problem of approach 
of a conflict-controlled system z'- u+(Z-t)u, lu\il,lul<1,t~[O, 21 with the target M = (2: 
I = I d '/*I at time -B= 2. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 

9. 
10. 

11. 

12. 

13. 

14. 

15. 

16. 

We are grateful to A.I. Subbotin for useful comments and for his interest. 

REFERENCES 

POLOVINKIN E.S. and SMIRNOV G.V., One approach to the differentiation of multivalued 
mappings and the necessary conditions for the optimality of solutions of differential 
inclusions, Differ. Uravn., 22, 6, 1986. 

4UBIN 3.P. and CELLINA A., Differential Inclusions: Set-Valued Maps and Viability Theory, 
Springer, Berlin, 1984. 

SUBBOTIN A.I. and SUBBOTINA N.I., Properties of the potential of a differential game, 
PMM, 46, 2, 1982. 

XIBBOTIN A.I. and TARAS'YEV A.M., Stability properties of the value function of a dif- 
ferential game and viscosity solutions of the Hamilton-Jacobi equation, Probl. Upravl. 
i Teorii Inform., 15, 6, 1986. 

JRANDALL M.G. and LIONS P.L., Viscosity solutions of Hamilton-Jacobi equations, Trans. 
AMS, 277, 1, 1983. 

iIONS P.L. and SOUGANIDIS P.E., Differential games, optimal control and directional 
derivatives of viscosity solutions of Bellman's and Isaacs's equations, SIAM Contr. 
Optim., 23, 4, 1985. 

(RASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games, Nauka, Moscow, 1974. 
<RASOVSKII N-N., On the unification of differential games, Dokl. Akad. Nauk SSSR, 226, 6, 
1976. 

<RASOVSKII N.N., Minimax absorption in a game of approach, PMM, 35, 6, 1971. 
KURZ~NSK~I A.B. and FILIPPOVA T.F., A description of a bundle of viable trajectories 
of a controlled system, Differ. Uravn., 23, 8, 1987. 
PANASYUK A.I.. and PANASYUK V.I., An equation generated by a differential inclusion, 
Matem. Zametki, 27, 3, 1980. 
TOLSTONOGOV A.A., On the equation of the differential funnel of a differential inclusion, 
Matem. Zametki, 32, 6, 1982. 
PANASYUK A.I., Equations of dynamics of reachability sets in optimization and control 
problems under uncertainty, PMM, 50, 4, 1986. 
BUTKOVSKII A.G., Method of integral funnels of differential inclusions for the analysis 
of controlled systems, Differ. Uravn., 21, 8, 1985. 
GURMAN V.I. and KONSTANTINOV G-N., Description and bounds of reachability sets of con- 
trolled systems, Differ. Uravn., 23, 3, 1987. 
OVSEYEVICH A.I. and CHERNOUS'KO F.L., Two-sided bounds on reachability regions of con- 
trolled systems, PMM, 46, 5, 1982. 



61 

17. GUSEINOV XH.G., SUBBOTIN A.I. and USHAKOV V.N., Derivatives of multivalued mappings and 
their application in control problems of game theory, Probl. Upravl. i Teorii Inform., 
14, 3, 1985. 

18. NIKOL'SKII M.S., On approximation of the reachability set for a differential inclusion, 
Vestnik MGU, ser. Vychisl. Matem. i Kiber., 4, 1987. 

19. TARAS'YEV A.M., USHAKOV V.N. and KHRIPUNOV A.P., A computer algorithm to solve control 
problems of game theory, PMM, 51, 2, 1987. 

20. GUSEINOV KH.G. and USHAKOV V.N., Strongly and weakly invariant sets relative to a dif- 
ferential inclusion, Dokl. Akad. Nauk SSSR, 303, 4, 1988. 

21. BLAGODATSKIKH V.I. and FILIPPOV A.F., Differential inclusions and optimal control, Trudy 
Matem., Inst. Akad Nauk SSSR, im. V.A. Steklova, 169, 1985. 

Translated by Z.L. 

J. AppZ. Maths Mechs, Vol. 55, No.1, pp. 61-67, 1991 OOZl-8928/91 $15.00+0.00 
Printed in Great Britain 01992 Pergamon Press plc 

THE NON-LINEAR ACTION OF TANGENTIAL STRESSES ON THE WAVE MOTION 
OF A LOW-VISCOSITY FLUID* 

V.A. BATYSHCH~ 

Formal asymptotic expansions of the solution of a non-linear problem on 
the wave motion of a fluid with specified tangential surface stresses 
are constructed at high Reynolds numbers. A non-linear boundary layer 
(BL), for which a selfsimilar solution is constructed, is formed Close 
to the free boundary. The flow outside of the BL satisfies Euler's 
equation. The free boundary is determined by a dynamic condition which 
takes account of the tangential stresses and the velocity field in the 
BL. The action of the tangential stresses on solitary waves and on low 
amplitude progressive waves is calculated numerically. 

Non-linear BL's close to free boundaries when there is 
thermocapillary flow have been studied in /l-4/. The action of 
tangential stresses on the wave notions of a fluid in the case of a 
disappearing viscosity has been treated in a linear formulation in /5, 
6/. Asymptotic expansions of the solution of a stationary non-linear 
problem with a free boundary have been constructed in /7, 8/. 

1. A non-linear Problem is considered concerning the wave motion of a fluid under the 
action of a system of "travelling" tangential stresses T(x - ct), specified on a free boundary 
r, for a system of Navier-Stokes equations with a disappearing viscosity v-.+0 

&,%?t-+ (v,V)v = -p"Vp f YAV + F. divv = 0 

p = 2vpnIIn f ok + p*, 2vplIn - 2vp (nnn) n = T (r - ct), 

aqat + VVG = 0, (+, 2) E r 

(1.1) 

Here v = (u,, ur), g = -_ge,, e, is a unit vector along the vertical s-axis, g is the 
gravitational acceleration constant, p is the density, k is the curvature of the free 
boundary r (it is assumed that k>O, if the boundary ris convex], a is the surface 
tension, n is the unit vector of the external normal to the free boundary, II is the rate of 
deformation tensor, p* = const and T are the specified pressure and tangential stress on the 
free boundary, c is the rate of displacement of the tangential load and G (I, 2, t) = 0 is 
4~PrikZ.Matem.Hekhan.,55.1,79-85,i~9i 


